Non-stationary spectra of local wave turbulence

نویسندگان

  • Colm Connaughton
  • Alan C. Newell
  • Yves Pomeau
چکیده

The evolution of the Kolmogorov–Zakharov (K–Z) spectrum of weak turbulence is studied in the limit of strongly local interactions where the usual kinetic equation, describing the time evolution of the spectral wave-action density, can be approximated by a PDE. If the wave action is initially compactly supported in frequency space, it is then redistributed by resonant interactions producing the usual direct and inverse cascades, leading to the formation of the K–Z spectra. The emphasis here is on the direct cascade. The evolution proceeds by the formation of a self-similar front which propagates to the right leaving a quasi-stationary state in its wake. This front is sharp in the sense that the solution remains compactly supported until it reaches infinity. If the energy spectrum has infinite capacity, the front takes infinite time to reach infinite frequency and leaves the K–Z spectrum in its wake. On the other hand, if the energy spectrum has finite capacity, the front reaches infinity within a finite time, t∗, and the wake is steeper than the K–Z spectrum. For this case, the K–Z spectrum is set up from the right after the front reaches infinity. The slope of the solution in the wake can be related to the speed of propagation of the front. It is shown that the anomalous slope in the finite capacity case corresponds to the unique front speed which ensures that the front tip contains a finite amount of energy as the connection to infinity is made. We also introduce, for the first time, the notion of entropy production in wave turbulence and show how it evolves as the system approaches the stationary K–Z spectrum. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenomenological model for predicting stationary and non-stationary spectra of wave turbulence in vibrating plates

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Radiation transport effects and the interpretation of infrared images of gravity waves and turbulence

Radiation transport modulates the spatial frequencies of atmospheric structures, acting as a low pass filter, which causes the power spectra of the accumulated radiance to have different power spectral slopes than the underlying atmospheric structure. Additional effects arise because of the non-stationarity of the atmosphere. The SHARC atmospheric radiance code is used to model both equilibrium...

متن کامل

A phenomenological model for predicting the effect of damping on wave turbulence spectra in vibrating plates

Thin plates vibrating at large amplitudes may exhibit a strongly nonlinear regime that has to be studied within the framework of wave turbulence. Experimental studies have revealed the importance of the damping on the spectra of wave turbulence, which precludes for a direct comparison with the theoretical results, that assumes a Hamiltonian dynamics. A phenomenological model is here introduced ...

متن کامل

Depth estimation of gravity anomalies by S-transform of analytic signal

The S-transform has widely been used in the analysis of non-stationary time series. A simple method to obtain depth estimates of gravity field sources is introduced in this study. We have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. This calculation procedure is based on replacement of the Fourier transform with the S-Tra...

متن کامل

0 50 50 50 v 1 1 9 M ay 2 00 5 Scale Invariant Spectra of the Oceanic Internal Wave Field

We present a theory predicting the high-frequency-high-wavenumber part of the spectral energy density of internal waves in the ocean. The theory is based on the wave turbulence formalism applied to a natural Hamiltonian description for the internal wave field. We show that stationary energy spectra form a family of statistically steady state scale invariant solutions. Remarkably, the high-frequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003